Result Report

SchutzPunkte

CYBERSECURITY

Result Report
Juice-Shop

Saftiger Vertrieb GmbH

Adam Apfel
Obststral3e 44
Safthausen

Deining, October 3, 2025
Project Number: 0001
Report Version 1.0

CONFIDENTIAL

SchutzPunkte

CYBERSECURITY

Schutzpunkt GmbH
SchloR3stralBe 7 A
92364 Deining

Contact:

Max Baumler

Mobile: +49 9184 8081 966

Mail: max.baeumler@schutzpunkt.com
Web: www.schutzpunkt.com

Managing Director: Max Baumler
Registration Court Nuermberg: HR B 44700
VAT-ID: DE455642304

mailto:%7B%7B%20lead_pentester.email%20%7D%7D
https://www.schutzpunkt.com

Result Report SChUtZPUI’IktC

CYBERSECURITY

Table of Contents

1 DOCUMENT CONLIONoeeeeeiiiiieeeeeeceeceeteeeeeeeseeeeteesnsssssecessassssssssscsssssssssssssssssssnssssssssssssnnanssns 3
ISt =1 o ISRt 3
1.2 LISt Of CRANGES ..ttt ettt sttt et e b sttt b e st a e s bt e et et e bt s b ene e b et entebe b enesbentesesbentesens 3
2 EXECULIVE SUMMAKY ..ouueeeiiiiiiiieeiiiniinetiissisnnstissssssssssess 4
2.1 VUINEIADIIILY OVEIVIEW ..cueiriiiiiieieeieritetetetente sttt sttt ste s sae s s s e st e st et e s e saesbessessessesssentensensessessessesnesnsensan 4
2.2 1dentified VUINEIADIIITIES ..ccveieoreieieeceeceee ettt eetee et e e sre e s tr e e ebeeebsesbaeenbesebaeenseeessseessseessseesnnnennns 5
3 GENEKAl CONAILIONSceeeeiiiiieeeeeciceeetienneeerreeetteeeeseesseeeseesssssssssessess 6
BT ODJECLIVE oottt ettt ettt ettt et a e st et eae st et e bt st e st s be b e st et et e st s b et e st e b et e b e b eat e b e e b et e be b e st eb et e aesbe e eneeee 6
T 11y Al <Y o Yo PR SRRRRRRRTN 6
1S G T oo < PP PP PTUTTRTPP 6
3.4 User ACCOUNTS AN PEIMISSIONS ...vviiiiiiiiiiiiiiiiiiiccre et cre s csbeecsaveessteesabeesabeeesbeesabessabeseabeesssteesstesssssesaseesssesnns 6
3.5 TP AQAIESSES oouveiiiiiicieiccite ettt s et eesaeeesat e e sabe e eabeessbeeesbeesabes s beeesbeestaessbeesabsesabse s baesabeeeabeeebbeeateesabeesareeearreeans 7
3.6 TeSt Basis @Nd APPIrOGCH ...ttt et sttt e e e b e et s ee 7
I T8 2 I 1o oY1= | [o 1SN 7
T S 3T [y T N 8
H1: Login Bypass via Error-based SQL INJection (SQLI) ...ccecveriririeririenieririenieesieteesterteesseesseseesessessesessessesessensesens 8
M1: Cross-Site Scripting (XSS) - REFIECLEAoouiiiiriiieiteeeeere ettt sttt s b e 12
M2: Flaws in DiSCOUNT COUPON LOGIC .ouveueruireeuirieieierietetenteteiesteestestesessestesestestesessesessesenessestesessensesessensesessenessensenense 16
M3: Directory LIStING ENADIEA ..ottt ettt b et sttt b st s b et e b et sbe e ene e 21
I1: Information DIiSCIOSUIE Via STACK TFACES ...eiivuiiiiiiiiceecetecetec ettt ettt es st e esabe e sabe e sabeeerbeeeabesebesensaeesseens 24
5 DISCIAIMIEN ...eeeeeccccccccccceeeeeeeeeeeeeeeeeeeeeeeeeeeseesssesssssssssssssssssssssssssssssssssssssssnsssssssasasasasanannns 27
LiST OF FIQUIES ..ttt ae et sss s ase e s sas s s sessansssesssssnssssessssnnns 28
L Y o o =T Lo G 29
A.1 Additional files related tO the FEPOIT ..ottt ettt ettt sa et s be e ee 29

CONFIDENTIAL Juice-Shop 2

Result Report SChUtZPLlnth

CYBERSECURITY

1 Document Control

1.1 Team

Contact Details Role

Max Baumler Mobile: +49 9184 8081 966 Lead Pentester
Mail: max.baeumler@schutzpunkt.com

1.2 List of Changes

Version Description Date
0.1 Initial version Oct 3, 2025
1.0 Finalization of the report Oct 3, 2025

CONFIDENTIAL Juice-Shop 3

Result Report SChUtZPUI’IktC

CYBERSECURITY

2 Executive Summary

The goal of this penetration test was to assess the security of web application Juice-Shop, identify
vulnerabilities, and evaluate potential risks to the organization's critical assets. All activities were
performed between Tuesday, September 30, 2025 and Thursday, October 2, 2025. In total 3 person
days were used for this test. This assessment is part of a broader effort to ensure the ongoing security
and resilience of the organization's systems and data.

Key Findings

+ Overall Risk Level: Based on the test results, the security level can be classified as moderate
compared to similar tests for other customers. In total 5 open vulnerabilities were identified,
with varying levels of risk.

* Key Vulnerabilities: The vulnerabilities H1, could potentially lead to: Immediate financial
losses due to vulnerable voucher codes. Furthermore, unauthorized access, data breaches, and
operational disruptions due to unauthorized access to an administration interface.

* Less risky vulnerabilities: In our judgment, the remaining vulnerabilities are less risky, but should
not be ignored. They could be exploited in certain scenarios, but their exploitation is less likely to
cause immediate damage.

Recommendations

1. Immediate Actions: The vulnerabilities H1, should be prioritized and addressed as soon as
possible. As these represent the greatest risk according to the testers' assessment.

2. Quick Wins: The vulnerabilities H1, can be remedied with presumabily little effort.

3. 0ngoing Security Improvement: Regular security fixes, testing and reviews should be part of a
continuous security improvement plan. Retesting key systems after remediation is highly
recommended to ensure effectiveness.

Limitations and Scope of the Test

The penetration test was conducted within a defined scope, focusing on the web application Juice-
Shop. The results are valid only for the period in which the test was conducted, and security postures
can change over time. It is important to note that not all vulnerabilities may have been discovered, as
the test is limited by the scope and the tight allocated timespan.

Conclusion

Overall, while the security level is generally regular, the identified vulnerabilities, especially the key
vulnerabilities, require immediate attention to avoid potential exploitation. Regular penetration
testing, along with prompt remediation of findings, is essential to maintaining a secure environment.
By addressing the identified risks, the organization can significantly improve its defense against cyber
threats and enhance the security of its digital assets.

2.1 Vulnerability Overview

In the course of this test unresolved vulnerabilities with the following criticality were identified: 1 High,
and

CONFIDENTIAL Juice-Shop 4

Result Report SChUtZPLlnktO

CYBERSECURITY

w

1
0 . m

Critical High Medium Low nfo Accepted/
Resolved

Figure 1 - Distribution of identified vulnerabilities

2.2 Identified Vulnerabilities

The table below provides an overview of the identified vulnerabilities.

CVSS Description IA QW State Page
- 8.6 Login Bypass via Error-based SQL Injection (SQLI) I -T
M1 6.1 Cross-Site Scripting (XSS) - Reflected ¥ 12
M2 5.3 Flaws in Discount Coupon Logic] 16
M3 5.3 Directory Listing Enabled ¥ 21

- 0.0 Information Disclosure via Stack Traces 24

Il 1A = Immediate action. 3¢ QW = Quick win.

CONFIDENTIAL Juice-Shop 5

Result Report SChUtZPLlnth

CYBERSECURITY

3 General Conditions

In this section the general conditions of the entire engagement are documented.

3.1 Objective

The objective of this penetration test is identifying security weaknesses, misconfigurations, and
potential exploitation paths which endanger confidentiality, integrity and availability of the web
application Juice-Shop, while ensuring compliance with relevant security policies and best practices.

The goal is to cover as many vulnerabilities as possible within a given time frame while adhering to all
rules of engagement agreed upon at the kick-off meeting to ensure minimal disruption to business
operations.

3.2 Test Period

All activities were performed between Tuesday, September 30, 2025 and Thursday, October 2, 2025.
In toatl 3 person days were used for this test.

3.3 Scope

The project scope defines exactly what is part of the test.

In Scope

The following applications are part of the scope

System Description
https://juice-shop.lab OWASP Juice-Shop (Testsystem)
Out of Scope

No subsections are explicitly excluded form the scope

3.4 User Accounts and Permissions

User accounts

No users were provided by the customer. However, there was a self-registration function. The following
accounts were self-registered and used.

User Role Description

max.baeumler@schutzpunkt.com Regular user Self-registered

Coupon codes

The following coupon codes were also provided by the customer.

CONFIDENTIAL Juice-Shop 6

Result Report SChUtZPLlnth

CYBERSECURITY

Code Discount Validity
q:<Irh7ZKp 10% September 2025
pEw8ph7ZKu 10% October 2025
pEw8ph7ZKu 15% October 2025
pes[Ch7ZKp 10% November 2025

3.5 IP Addresses

From these systems the attacks were performed.

System Description

80.151.38.120 IP Address of our office in Deining

3.6 Test Basis and Approach
The test was conducted using the OWASP WSTG framework.
The following test approach was chosen:

* Base of Information: Grey-Box
* Aggressiveness: Deliberative

+ Coverage: Limited

* Approach: Obviously

* Access: Network Connection

* Origin: External

3.7 Limitations

During the test no limitations occurred.

CONFIDENTIAL Juice-Shop 7

Result Report SChUtZPLlnth

CYBERSECURITY

4 Findings

@ H1: Login Bypass via Error-based SQL
Injection (SQLI)

State

Immediate Action recommended Yes Il

Quick Win to Fix Yes 3¢

Tags WSTG-INPV-05, CWE-89, ATT&CK-T1190
Affected Components https://juice-shop.lab/rest/user/login
Summary

The application exposes database error information when processing untrusted input, enabling error-
based SQL injection. Attackers can trigger SQL interpreter errors and use the returned error messages
to bypass the login.

Impact
This allows any visitor to the website to log in as an administrator using this vulnerability.

Furthermore, disclosure of detailed database errors enables targeted inference of query structure and
schema. Attackers can use error content to extract sensitive data, modify records, or bypass logical
controls that depend on query outcomes. Persistent exposure of SQL errors increases the probability
of full data compromise for affected tables and related entities.

Recommendation

Enforce safe handling of all user-controlled inputs and stop exposing database error details to end
users.

Technical Description

Untrusted input is concatenated into SQL queries without parameterization, allowing malformed SQL
to reach the database engine. When evaluation fails, the database emits detailed error messages that
the application returns in its HTTP responses or Ul, leaking internal query context. Error-based SQL
injection leverages these disclosed errors to iteratively learn the structure of the underlying queries
and schema. Disclosed content commonly includes SQLSTATE codes, driver names, exception class and
stack traces, table or column identifiers, function names, and type mismatch details. These signals
enable precision adjustments of input values, revealing columns, types, and constraints until
meaningful data retrieval or modification becomes feasible. The root cause is string-based query
construction and permissive error handling that surfaces low-level database exceptions to end users.

CONFIDENTIAL Juice-Shop 8

https://www.first.org/cvss/calculator/3-1#CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:L/I:H/A:L

Result Report SChUtZPLlnth

CYBERSECURITY

Secondary factors include inconsistent input validation and lack of enforced parameterized data
access patterns across the codebase. The example below demonstrates a generic server response that
reveals a database error without exposing environment-specific details.

HTTP/1.1 500 Internal Server Error
Content-Type: text/plain; charset=utf-8

Exror executing query on /items?id=<value>

SQLSTATE[42000] : Syntax error or access violation: TODO: actual DB error excerpt (e.g.,
column not found, type mismatch)

Driver: TODO: driver/version if disclosed | Query fragment: TODO: fragment if disclosed

Typical indicators of error-based SQL injection include database error codes in responses, leaked
identifiers and data types, and traces linking directly to query construction paths. When present, these
signals materially reduce uncertainty for an attacker, speeding the path to data compromise.

User Web App Database

Sends input in parameter

v

Builds SQL using input (no parameters)

v

Returns detailed SQL error

User Web App Database

Figure 2 - Error-based SQLi signal flow

Evidence

In Figure 3, you can see that an SQL error is triggered if the email address containsa '.

CONFIDENTIAL Juice-Shop 9

Result Report SChUtZPLlnkt.

CYBERSECURITY

Original request v Response

Pretty IO = Pretty
| HTTP/1.

}

Figure 3 - SQL error in email

By cleverly choosing the username ' or 1 = 1; -- -, an SQL injection occurs, allowing the login to be
bypassed. Finally, you are logged in as an administrator (see Figure 3).

The following happens in the background when the query is assembled:

1. ' closes the email address field.

2. Afterward the inserted SQL code is then used.

3. or 1 = 1 is atrue statement.

4. ; terminates the SQL query.

5. The rest of the original statement is commented out with --.

SELECT * FROM Users WHERE email = ‘" or 1 = 1; -- -' AND password =
'e8636ea013e682faft6lf56celcblab5c’ AND deletedAt IS NULL

Original request v Response
Pretty

application
Platform:

164; x64) AppleWebKit/537.36 (KHTML, 1i

Figure 4 - SQL injection login bypass

This then allows successful access to the administration interface at https://juice-shop.lab/#/
administration (see Figure 5). Here, for example, all other users can be viewed and reviews can be
deleted.

CONFIDENTIAL Juice-Shop 10

Result Report SChUtZPLlnkt.

CYBERSECURITY

C [E htpsi//juice-shop.lab/#/administration

. OWASP Juice Shop Q O Account W vo

Administration

Registered Users Customer Feedback

2 Great shop! Awesome service! (***@juice-sh.op)

Nothing useful available here! (***der@juice-sh.op)

Please send me the juicy chatbot NFT in my wallet
at /juicy-nft : "purpose betray marriage blame
crunch monitor spin slide donate sport lift clutch”
(***ereum@juice-sh.op)

Incompetent customer support! Can't even upload
photo of broken purchase!

Support Team: Sorry, only order confirmation PDFs
can be attached to complaints! (anonymous)

This is the store for awesome stuff of all kinds!
(anonymous)

Never gonna buy anywhere else from now on!
Thanks for the great service! (anonymous)

Keep up the good work! (anonymous)

Figure 5 - Access to administration interface

Technical Recommendation

Replace string-concatenated SQL with prepared statements and bind variables for every query that
uses user-controlled data. Enforce parameterization via a shared data access layer or ORM
configuration and prohibit ad-hoc query construction in code reviews and CI checks. Implement
generic error handling that maps database exceptions to standardized responses (e.g., HTTP 500)
without revealing SQLSTATE, identifiers, or stack traces, and log full details server-side with correlation
IDs. Disable verbose error pages and detailed exception messages in production configurations for
the web framework and database drivers. Validate and normalize inputs according to strict type and
length constraints before reaching the data layer, rejecting unexpected formats early. Inventory and
refactor all endpoints that include user input in queries, adding tests to assert that errors are not
reflected and that queries are parameterized. Add static analysis or lint rules to detect string-built SQL
and enforce prepared statement usage across the codebase. Example (conceptual):

// Before: vulnerable
String sql = "SELECT * FROM items WHERE id = " + id_variable; // concatenation
stmt.executeQuery(sql);

// After: parameterized

PreparedStatement ps = conn.prepareStatement("SELECT * FROM items WHERE id = ?");
ps.setInt(1l, id_variable);

ps.executeQuery();

References

* https://owasp.org/www-project-web-security-testing-quide/latest/4-Web_Application_Security_Testing/07-
Input_Validation_Testing/05-Testing_for_SQL_Injection

* https://owasp.org/www-community/attacks/SQL_Injection

* https://cwe.mitre.org/data/definitions/89.htm/

* https://portswigger.net/web-security/sql-injection

CONFIDENTIAL Juice-Shop 1"

https://owasp.org/www-project-web-security-testing-guide/latest/4-Web_Application_Security_Testing/07-Input_Validation_Testing/05-Testing_for_SQL_Injection
https://owasp.org/www-project-web-security-testing-guide/latest/4-Web_Application_Security_Testing/07-Input_Validation_Testing/05-Testing_for_SQL_Injection
https://owasp.org/www-community/attacks/SQL_Injection
https://cwe.mitre.org/data/definitions/89.html
https://portswigger.net/web-security/sql-injection

Result Report SChUtZPLlnth

CYBERSECURITY

Vector CVSS:3.1/AV:N/AC:L/PR:N/UL:R/S:C/C:L/I:L/A:N
Immediate Action recommended No

Quick Win to Fix Yes

Tags WSTG-CLNT-01, CWE-79

Affected Components https://juice-shop.lab/#/search?q=
Summary

The application reflects user-supplied input into the response without proper context-aware output
encoding. This enables an attacker to craft a link or request that executes attacker-controlled script in
the victim's browser within the application. The issue is limited to transient responses and requires
user interaction, but consequences can include account compromise, data exposure, and
unauthorized actions performed via the victim's session.

Impact

Successful exploitation allows execution of attacker-controlled script in the victim's browser in the
application. Potential outcomes include session misuse if tokens are accessible to script, unauthorized
actions performed on behalf of the user, exposure of on-page sensitive data, and trusted UI
manipulation that facilitates convincing in-origin phishing. The attack requires user interaction (for
example, following a crafted link or submitting data), and impact can extend to any user who engages
with the crafted input.

Recommendation

Apply strict context-aware output encoding for all reflected data and enforce a restrictive Content
Security Policy if possible.

Technical Description

Reflected Cross-Site Scripting occurs when user-controlled data is immediately echoed back in a server
response without appropriate output encoding for its rendering context. Typical sources include query
parameters, path segments, form fields, or headers that are inserted into HTML, attributes, URLs, or
inline scripts via string concatenation. The root cause is the absence or bypassing of context-aware
output encoding and the use of unsafe rendering patterns that treat untrusted data as trusted
markup or script. Framework auto-escaping may be disabled, misconfigured, or circumvented by
unsafe templating constructs. Improper content handling, such as returning HTML with untrusted
data while using a permissive response type, can further increase exposure, though the core flaw is
the lack of correct encoding. A restrictive Content Security Policy (CSP) can limit impact but does not
remediate the underlying issue. The example below shows a parameter reflected into HTML content
without encoding, illustrating how untrusted input is rendered by the browser:

CONFIDENTIAL Juice-Shop 12

https://www.first.org/cvss/calculator/3-1#CVSS:3.1/AV:N/AC:L/PR:N/UI:R/S:C/C:L/I:L/A:N

Result Report SChUtZPLlnkt.

CYBERSECURITY

GET /search?qg=<untrusted_input> HTTP/1.1
Host: TODO: host

User-Agent: TODO

Accept: text/html

<ldoctype html>
<html>
<body>
<p>Search for: <untrusted_input></p>
</body>
</html>

Evidence

+ Affected endpoint and parameter:
o URL: https://juice-shop.lab/#/search
o Parameter: q

In Figure 6, you can see that the input asdf in the search field is mirrored in the Search Results context
of the web application.

OWASP Juice Shop

essfully solved a challenge: Login Admin (Log in with the administrator's user account.)

Search Results - asdf

Figure 6 - Reflected input from search field

Entering the following JavaScript code displays a pop-up message confirming the execution of this
code (see Figure 7).

<iframe%20src%3D"javascript:alert(‘Protection point%2@XSS’')">

CONFIDENTIAL Juice-Shop 13

https://juice-shop.lab/#/search

Result Report SChUtZPLlnth

CYBERSECURITY

& ¢ /juice-shop.lab/#/search?q=<iframe%20src%3D"javascript:alert('Schutzpunkt%20XSS')">

OWASP Juice Shop juice-shop.lab says alert('Schutzpunkt XSS')">

Schutzpunkt XSS

essfully solved a challenge: Login Admin (Log in with the administrator’s user a.

Search Results -

Figure 7 - Reflected XSS

Figure 8 shows the affected location in the frontend code of the application.

Figure 8 - Location in the code with XSS

Technical Recommendation

Identify every location where untrusted input is reflected into responses and ensure context-aware
output encoding is applied before rendering. Use framework features that auto-escape by default, and
avoid concatenating untrusted data into HTML, attributes, URLs, CSS, or JavaScript contexts. Apply the
correct encoder for the specific context, such as HTML text, HTML attribute, URL parameter, or
JavaScript string, instead of relying on generic or blacklist filters. Avoid rendering untrusted input as
HTML; use safe templating and DOM APIs that handle text nodes rather than markup. Deploy a
restrictive CSP that disallows inline script and limits script sources to vetted origins to reduce impact if
an encoding gap remains. Add unit and integration tests that verify reflected fields are encoded and
that dangerous characters are rendered harmless in their specific contexts.

Example (illustrative):

CONFIDENTIAL Juice-Shop 14

Result Report SChUtZPLlnth

CYBERSECURITY

// Template or server-side rendering
String safe = org.owasp.encoder.Encode.forHtml(userInput);
out.print(safe);

References

* https://owasp.org/www-community/attacks/xss/

* https://cheatsheetseries.owasp.org/cheatsheets/Cross_Site_Scripting_Prevention_Cheat_Sheet.htm/

* https://owasp.org/www-project-web-security-testing-quide/latest/4-Web_Application_Security_Testing/07-
Input_Validation_Testing/01-Testing_for_Reflected_Cross_Site_Scripting

* https://cwe.mitre.org/data/definitions/79.htm/

CONFIDENTIAL Juice-Shop 15

https://owasp.org/www-community/attacks/xss/
https://cheatsheetseries.owasp.org/cheatsheets/Cross_Site_Scripting_Prevention_Cheat_Sheet.html
https://owasp.org/www-project-web-security-testing-guide/latest/4-Web_Application_Security_Testing/07-Input_Validation_Testing/01-Testing_for_Reflected_Cross_Site_Scripting
https://owasp.org/www-project-web-security-testing-guide/latest/4-Web_Application_Security_Testing/07-Input_Validation_Testing/01-Testing_for_Reflected_Cross_Site_Scripting
https://cwe.mitre.org/data/definitions/79.html

Result Report SChUtZPLlnth

CYBERSECURITY

Vector CVSS:3.1/AV:N/AC:L/PR:N/UL:N/S:U/C:N/I:L/A:N
Immediate Action recommended Yes I
Quick Win to Fix No or to less Information

WSTG-BUSL-01, WSTG-BUSL-02, CWE-840,

Tags CWE-345, ATT&CK-T1190
Affected Components https://juice-shop.lab/rest/basket/6/coupon/
Summary

The application’s discount coupon logic allows unintended price reductions due to insufficient server-
side validation and weak enforcement of redemption rules. Attackers can apply or reuse coupons
beyond intended price constraints. The weakness is a design flaw in business rules and transactional
enforcement, not a cosmetic issue.

Impact

Unauthorized discount application can lead to direct revenue loss, margin erosion, and distorted
financial reporting. Inventory may be depleted at unintended price points, and promotional budgets
and campaign analytics become unreliable. Abuse can cascade into fraud patterns such as arbitrage,
resale, or account farming.

Preconditions

Received or collected one or more discount vouchers in order to derive a pattern.

Recommendation

Implement a new voucher concept or at least validate voucher rules comprehensively on the server
side.

Technical Description

The discount system does not strictly validate and enforce business rules on the server, which enables
misuse of coupon benefits. Typical gaps include missing checks for single-use limits, lack of binding a
coupon to a specific account or order, absence of minimum threshold validation, improper handling of
stacking rules, and failure to block negative or near-zero totals.

If coupon state is tracked client-side or inferred from mutable parameters, attackers can tamper with
values or replay requests to achieve repeated discounts. Weak input validation may also permit
unintended combinations.

CONFIDENTIAL Juice-Shop 16

https://www.first.org/cvss/calculator/3-1#CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:L/A:N

Result Report SChUtZPLlnth

CYBERSECURITY

Evidence

The customer provided the following coupon codes.

Code Discount Validity
q:<Irh7ZKp 10% September 2025
pEw8ph7ZKp 10% October 2025
pEw8ph7ZKu 15% October 2025
pes[Ch7ZKp 10% November 2025
Decoding

It is noticeable that these are similar in terms of the date and the percentage. The part h7zK always
seems to remain the same, which suggests that the coupons are encoded. This turned out to be
Base85 encoding, as can be seen in Figure 9, and is structured as follows: MMMYY-%%, where % stands
for the discount in percent.

q:<Irh7ZKp

From Base85 Rl
Alphabet pEw8ph7ZKu
0-9a-zA-Z. \-:+.. Remove non-alphabet chars pes[Ch7ZKp

All-zero group char

mc 43 = 4

Output

SEP25-100CT25-100CT25-15N0V25-10

Figure 9 - Base85 decoded coupons

Creating your own coupon
A new coupon 0CT25-99 was then created (Figure 10). The value of this coupon is pEw8ph7z*G

CONFIDENTIAL Juice-Shop 17

Result Report

Recipe

To Base85

Alphabet
0-9a-zA-Z. \-:+=A1/*?2 |

SchutzPunkte

CYBERSECURITY

~ BB B Input
= 0CT25-99
|:| Include delimeter
mec 8§ = 1
Output
PEwW8ph7Z*G

Figure 10 - Self-created coupon

Redeeming the coupon

The following request-response pair shows the attempt to redeem this self-generated coupon. The
checkout overview shows that this was successful (see Figure 11).

Request

PUT /rest/basket/6/coupon/pEw8ph7Z*G HTTP/1.1

Host: juice-shop.lab

[...SNIP...]

Content-Type: application/json
Accept: application/json, text/plain, */*
Sec-Ch-Ua-Platform: "Linux"
Origin: https://juice-shop.lab
Sec-Fetch-Site: same-origin
Sec-Fetch-Mode: cors
Sec-Fetch-Dest: empty

Referexr: https://juice-shop.lab/
Accept-Encoding: gzip, deflate, br
Priority: u=1, i

Connection: keep-alive

CONFIDENTIAL

Juice-Shop 18

Result Report SChUtZPLlnkt.

CYBERSECURITY

Content-Length: 2

{}

Response

HTTP/1.1 200 OK

Server: nginx/1.22.1

Date: Thu, 02 Oct 2025 13:00:07 GMT
Content-Type: application/json; charset=utf-8
Content-Length: 15

Connection: keep-alive
Access-Control-Allow-Origin: *
X-Content-Type-Options: nosniff
X-Frame-Options: SAMEORIGIN
Feature-Policy: payment 'self'
X-Recruiting: /#/jobs

ETag: W/"f-EKshmF+cUf70Vv3BHGSCI98QSEKM"
Vary: Accept-Encoding

{"discount":99}

Checkout-Page

C [8] hupsi//juice-shop.lab/#/

..OWASP Juice Shop

Delivery Address Payment Method Order Summary
Max Baumler Card ending in 1239
asdfasdf, asdfasdf, , 92364 Card Holder" asdfasdf
Germany Items 14999.990
Phone Number 9123123
Delivery 0.000

Your Basket
Promotion 14849.990

Total Price 150.000
Juice Shop
"Permafrost” 9999.990
2020 Edition © Place your order and pay

You will gain 1500 Bonus Points from this order!

Best Juice
Shop
Salesman
Artwork

Figure 11 - Gained Discount of 99 %

Technical Recommendation

Verify on server side whether a coupon is actually permitted. For November, for example, check
whether the coupon is actually exactly Nov25-1@ and do not calculate the discount from the text.
However, it is recommended that the voucher logic be reimplemented, as the same problem can arise
repeatedly due to carelessness. For example, if you want to grant a customer a voucher with a larger
discount, this is currently not possible, but instead allows all users to obtain this discount fraudulently.

CONFIDENTIAL Juice-Shop 19

Result Report SChUtZPLlnth

CYBERSECURITY

Validate and enforce all coupon constraints on the server before applying any price change, including
eligibility (user, segment, geography), validity window, minimum order thresholds, item/category
scope, stacking limits, and maximum discount. Bind coupon instances to a unique subject, such as
user ID or order ID, and persist state with atomic transactions to ensure single-use or limited-use
enforcement. Log all coupon lifecycle events with correlation IDs and monitor for anomalies such as
unusually high redemption rates or rapid sequential uses. Add unit and integration tests for rule
evaluation, idempotency, and concurrency to prevent regressions.

References

* https://owasp.org/www-project-web-security-testing-quide/latest/4-Web_Application_Security_Testing/11-
Business_Logic_Testing/01-Testing_for_business_logic

* https://cheatsheetseries.owasp.org/cheatsheets/Business_Logic_Security Cheat_Sheet.html

* https://portswigger.net/web-security/logic-flaws

* https://owasp.org/Top10/A04_2021-Insecure_Design/

CONFIDENTIAL Juice-Shop 20

https://owasp.org/www-project-web-security-testing-guide/latest/4-Web_Application_Security_Testing/11-Business_Logic_Testing/01-Testing_for_business_logic
https://owasp.org/www-project-web-security-testing-guide/latest/4-Web_Application_Security_Testing/11-Business_Logic_Testing/01-Testing_for_business_logic
https://cheatsheetseries.owasp.org/cheatsheets/Business_Logic_Security_Cheat_Sheet.html
https://portswigger.net/web-security/logic-flaws
https://owasp.org/Top10/A04_2021-Insecure_Design/

Result Report SChUtZPLlnth

CYBERSECURITY

Vector CVSS:3.1/AV:N/AC:L/PR:N/UL:N/S:U/C:L/I:N/A:N
Immediate Action recommended No

Quick Win to Fix Yes

Tags CWE-548, CWE-200

Affected Components https://juice-shop.lab/ftp

Summary

The web server is configured to allow directory listing on one or more public paths. This exposes the
names and structure of files and subdirectories to any visitor, even without authentication. File listings
increase information disclosure and make reconnaissance and targeted attacks easier.

Impact

Unrestricted directory browsing can reveal sensitive files, configuration remnants, backups, and
credentials stored within web-accessible paths. Exposed filenames and structure enable faster
reconnaissance, targeted brute-force against discovered assets, and discovery of overlooked
administrative endpoints. Information leakage can aid subsequent attacks such as credential
harvesting from configuration files, exploitation of outdated components identified in listings, and
unauthorized download of proprietary content. If search engines index these listings, exposure
persists beyond the immediate audience and increases long-term risk.

Recommendation

Disable directory listing on all publicly accessible web paths.

Technical Description

Directory listing occurs when the server returns an automatically generated index page for a directory
that lacks a default index file such as index.html. It typically results from enabling features like Apache
mod_autoindex, Nginx autoindex, or IIS Directory Browsing, or from default configurations that are
not hardened. When enabled, a request to a directory path (for example, /assets/) yields a page listing
files, sizes, timestamps, and subdirectories. These listings reveal internal file naming, build artifacts,
backups, temporary files, and configuration fragments that were not intended to be publicly
accessible. Attackers and automated crawlers can iterate directories to map the application structure
and locate sensitive files faster. Publicly reachable listings require no authentication and may be
cached or indexed by search engines, increasing unintended exposure. This behavior is often
accidental and persists until directory indexing is explicitly disabled or a default index file is provided.

Example request and response demonstrating an enabled listing.

GET /assets/ HTTP/1.1
Host: example.com

CONFIDENTIAL Juice-Shop 21

https://www.first.org/cvss/calculator/3-1#CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:L/I:N/A:N

Result Report SChUtZPLlnth

CYBERSECURITY

HTTP/1.1 200 OK
Content-Type: text/html

<IDOCTYPE html>
<html>
<head><title>Index of /assets/</title></head>
<body>
<h1>Index of /assets/</h1l>
backup.zip
.env
config.old
</body>
</html>

Evidence

* Observed URLs with directory listing enabled:
o https://juice-shop.lab/ftp

As can be seen in Figure 12, several sensitive files can also be read under the above path, such as:

* incident-support.kdbx
* suspicious_errors.yml
* coupons_2013.md.bak

@ listing directory /ftp X +

> C [& httpsi/ljuice-shop.lab/ftp

~ [ftp
quarantine acquisitions.md announcement_encrypted.md
coupons_2013.md.bak eastere.gg encrypt.pyc
incident-support.kdbx legal.md package-lock.json.bak
package.json.bak suspicious_errors.ym|

Figure 12 - Directory Listing Enabled

Technical Recommendation

Turn off directory indexing at the web server level for all public sites and applications, and enforce
least exposure for any path that must remain accessible. In Apache HTTP Server, disable indexes
globally or per directory by removing autoindex and using a restrictive Options directive.

httpd.conf or .htaccess

Options -Indexes

Ensure mod_autoindex is not loaded if not needed

LoadModule autoindex_module modules/mod_autoindex.so # comment or remove

In Nginx, disable autoindex for relevant locations or server blocks.

server {
location / {
autoindex off;

CONFIDENTIAL Juice-Shop 22

Result Report SChUtZPLlnth

CYBERSECURITY

In 1IS, disable Directory Browsing at the site or application level, or enforce it via web.config.

<!-- web.config -->
<configuration>
<system.webServer>
<directoryBrowse enabled="false" />
</system.webServer>
</configuration>

If a listing is required for a legitimate use case, restrict it to authenticated, role-limited users and
isolate it from public routes. Validate that no sensitive files reside within web-accessible directories
and deploy a default index page where appropriate to prevent auto-generated listings.

References

* https://cwe.mitre.org/data/definitions/548.html

* https://owasp.org/Top10/A05_2021-Security_Misconfiguration

* https://httpd.apache.org/docs/current/en/mod/mod_autoindex.htm|
* https://nginx.org/en/docs/http/ngx_http_autoindex_module.html

CONFIDENTIAL Juice-Shop 23

https://cwe.mitre.org/data/definitions/548.html
https://owasp.org/Top10/A05_2021-Security_Misconfiguration
https://httpd.apache.org/docs/current/en/mod/mod_autoindex.html
https://nginx.org/en/docs/http/ngx_http_autoindex_module.html

Result Report SChUtZPLlnth

CYBERSECURITY

Vector CVSS:3.1/AV:N/AC:L/PR:N/UL:N/S:U/C:N/I:N/A:N
Immediate Action recommended No

Quick Win to Fix No or to less Information

Tags WSTG-ERRH-02, CWE-209

Affected Components https://juice-shop.lab/rest/<anything>
Summary

The application exposes detailed stack traces to end users when errors occur. These traces reveal
internal code paths, framework and library versions, configuration details, and file system locations.
Such information enables efficient reconnaissance and can be used to craft targeted attacks. The
behavior indicates improper error handling and debug or verbose settings in production.

Impact

Attackers can enumerate frameworks, versions, and libraries from stack trace content, enabling
version-specific exploit selection. File paths and class names reveal application structure, aiding
targeted probing of components and error-prone interfaces. Detailed exception messages may
disclose configuration values and operational context, raising the likelihood of data exposure via
secondary flaws.

Recommendation

Disable stack trace display in production and return generic error messages while logging detailed
diagnostics server-side.

Technical Description

This finding occurs when unhandled exceptions or misconfigured error handlers return raw stack
traces in HTTP responses or Ul pages. Verbose error output is often enabled by default in
development or debug modes and mistakenly left active in production. Frameworks commonly include
default error pages that echo exception messages, class names, file paths, line numbers, and
dependency versions. Returning these details to clients provides attackers with accurate insight into
the internal architecture, technologies in use, and potential weak points. Causes include missing
global exception handling, absent environment gating for debug flags, direct serialization of
exceptions, and insufficient API error normalization. Typical signals include 500 responses with
multiline traces, error pages that include framework branding and version numbers, and directory or
file path disclosures. The issue is content leakage, not availability or authorization failure, but it directly
improves the attacker’s ability to exploit other flaws. Preventing disclosure requires routing all errors
through standardized handlers that emit generic messages while logging specifics server-side. The
following illustrates a representative leaked response.

CONFIDENTIAL Juice-Shop 24

https://www.first.org/cvss/calculator/3-1#CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:N

Result Report SChUtZPLlnth

CYBERSECURITY

HTTP/1.1 500 Internal Server Error
Content-Type: text/plain; charset=utf-8

java.lang.NullPointerException: Cannot read property 'id' of undefined

at com.example.controllers.UserController.getUser(UserController.java:42)

at
org.springframework.web.servlet.FrameworkServlet.processRequest(FrameworkServlet. java:1012)

at javax.servlet.http.HttpServlet.service(HttpServlet.java:661)
/opt/app/services/user-service/src/main/java/com/example/controllers/UsexController.java:42
Framework: Spring Boot 2.6.3

Evidence

If you call one of the REST API's unknown endpoints here asdf at the URL https://juice-shop.lab/rest/, you
will receive a stack trace of the application (see Figure 13). This contains the following information:

* Version number + technology: Express.js 4.21.0
* Technology:Angular.js
* Path: /home/debian/juice-shop

C [&] kttpsi//juice-shop.lab/rest/asdf

OWASP Juice Shop (Express *4.21.0)

500 Error: Unexpected path: /rest/asdf
at /home/debian/juice-shop/build/routes/angular.js:42:18
at Layer.handle [as handle_request] (thome/debian/juice-shop/node_modules/express/lib/router/layer.js:95:5)
at trim_prefix (/home/debian/juice-shop/node_modules/express/lib/router/index.js:328:13)
at /home/debian/juice-shop/node_modules/express/lib/router/index.js:286:9
at Function.process_params (‘home/debian/juice-shop/node_modules/express/lib/router/index.js:346:12)
at next (fhome/debian/juice-shop/node_modules/express/lib/router/index.js:280:10)
at /home/debian/juice-shop/build/routesiverify.js:187:5
at Layer.handle [as handle_request] (/home/debian/juice-shop/node_modules/express/lib/router/layer.js:95:5)
at trim_prefix (/home/debian/juice-shop/node_modules/express/lib/router/index.js:328:13)
at /home/debian/juice-shop/node_modules/express/lib/router/index.js:286:9
at Function.process_params (thome/debian/juice-shop/node_modules/express/lib/router/index.js:346:12)
at next (fhome/debian/juice-shop/node_modules/express/lib/router/index.js:280:10)
at /nome/debian/juice-shop/build/routesiverify.js:111:5
at Layer.handle [as handle_request] (/home/debian/juice-shop/node_modules/express/lib/router/layer.js:95:5)
at trim_prefix (/home/debian/juice-shop/node_modules/express/lib/router/index.js:328:13)
at /home/debian/juice-shop/node_modules/express/lib/router/index.js:286:9
at Function.process_params (/home/debian/juice-shop/node_modules/express/lib/router/index.js:346:12)
at next (/home/debian/juice-shop/node_modules/express/lib/router/index.js:280:10)
at logger (/home/debian/juice-shop/node_modules/morgan/index.js:144:5)
at Layer.handle [as handle_request] (home/debian/juice-shop/node_modules/express/lib/router/layer.js:95:5)
at trim_prefix (/home/debian/juice-shop/node_modules/express/lib/router/index.js:328:13)
at /nome/debian/juice-shop/node_modules/express/lib/router/index.js:286:9

Figure 13 - Stack trace at unknown REST endpoint

Technical Recommendation

Implement centralized exception handling that maps all unhandled errors to generic responses
without stack or path details. Ensure environment gating disables debug or developer exception pages
in production, e.g., debug=false and equivalent settings across all services. Standardize API error
formats to a minimal schema, such as an opaque error code and correlation ID, and avoid echoing
exception messages. Log full diagnostics, including stack traces, to server-side sinks with appropriate
access controls and retention, not to client responses. Review web server and application framework
configuration to ensure no default verbose error pages are exposed externally. Validate behavior with
automated tests that assert absence of stack traces and internal paths in all error scenarios.

CONFIDENTIAL Juice-Shop 25

Result Report SChUtZPLlnkt.

CYBERSECURITY

// Centralized error handling example (generic response)
app.use(function errorHandler(err, req, res, next) {
const correlationId = generateld();
logErrox({ correlationId, err }); // server-side log includes err.stack
// Do not return err.stack or internal paths to client
res.status(500) .json({ error: "An unexpected error occurred.", correlationId });

3

References

* https.//owasp.org/www-project-web-security-testing-quide/latest/4-Web_Application_Security_Testing/10-
Error_Handling/02-Testing_for_Stack_Trace

* https://cwe.mitre.org/data/definitions/209.htm|

* https://owasp.org/Top10/A05_2021-Security_Misconfiguration/

* https.//cheatsheetseries.owasp.org/cheatsheets/Error_Handling_Cheat_Sheet.htm/

CONFIDENTIAL Juice-Shop 26

https://owasp.org/www-project-web-security-testing-guide/latest/4-Web_Application_Security_Testing/10-Error_Handling/02-Testing_for_Stack_Trace
https://owasp.org/www-project-web-security-testing-guide/latest/4-Web_Application_Security_Testing/10-Error_Handling/02-Testing_for_Stack_Trace
https://cwe.mitre.org/data/definitions/209.html
https://owasp.org/Top10/A05_2021-Security_Misconfiguration/
https://cheatsheetseries.owasp.org/cheatsheets/Error_Handling_Cheat_Sheet.html

Result Report SChUtZPUI’IktC

CYBERSECURITY

5 Disclaimer

This engagement has been conducted with the objective of identifying potential security
vulnerabilities and providing actionable recommendations. However, it is important to note the
following:

* No Guarantee of Completeness: While the test is designed to identify vulnerabilities within the
scope, there is no guarantee that all vulnerabilities, threats, or risks have been discovered. The
results should not be considered exhaustive, and new vulnerabilities may arise over time.

* Time-and-Material Approach: The engagement follows a time-and-material approach, where
testing efforts are billed based on the amount of time spent, resources used, and the complexity of
tasks performed. As such, the results should be viewed in the context of the testing period and
resources allocated.

* Temporary Validity of Results: The findings and vulnerabilities identified are valid only for the
period during which the test was conducted. Security postures can change quickly, and new
vulnerabilities may arise after the test is completed.

* Retesting and Continuous Improvement: Retesting is always encouraged as it can uncover
additional vulnerabilities that may not have been detected in the initial assessment or occur in the
future. Security is an ongoing process, and frequent testing is vital for maintaining a strong
security posture.

* Protection Systems May Impact Results: Active protection systems (such as Intrusion Detection
Systems, Intrusion Prevention Systems, Firewalls, etc.) may impact the test results. These systems
can interfere with the testing process, potentially leading to incomplete or misleading findings.

* False Positives: During the assessment, false positives may occur—cases where vulnerabilities are
identified but later determined not to be exploitable or not present. In our practice, we share all
information gathered, including potential false positives, as they might still provide useful insights.
Prominent examples are findings based on the reported version number that got backports of
security fixes or applications that that use vulnerable libraries but not the vulnerable components
of them.

The results and recommendations provided are based on the understanding and scope of the testing,
and it is advised that they be used as part of a broader, continuous security improvement process.

CONFIDENTIAL Juice-Shop 27

Result Report SChUtZPLlnth

CYBERSECURITY

List of Figures

Figure 1 - Distribution of identified vVUINErabilitiesccoverereiener e 5
Figure 2 - Error-based SQLIi SigNal fIOWcociiiiiiee ettt st ettt 9
Figure 3 - SQL €rror iN @MAil ...ttt et b sttt ee s b sttt e et e nae s 10
Figure 4 - SQL iNjection 10GIiN DYPASS ..cciiiriiiiiiriinieniniseseseseessessessessessessessesseessessessessessessessessessssssensensens 10
Figure 5 - Access to administration INTEITACEcocoveveirerrenereree ettt 11
Figure 6 - Reflected input from search field ...t 13
FIQUIE 7 - REFIECEEA XSS ettt ettt s bt bttt ettt e b e s b s b e e st e st et et e e e neens 14
Figure 8 - Location in the code WIth XSS ...ttt ettt be e s 14
Figure 9 - Base85 deCOdEd COUPONS ...ccevevirirrerieiriireeerieseetereste et st e et e et s s et besae e sse s s et s st sseaesesseeenens 17
Figure 10 - Self-Creat@d COUPON ..ottt ettt et s st ettt besbesbe s st eat et et etesnens 18
Figure 11 - Gained DiSCOUNT OF 99 90 ...eoiuiiiiiiiieieeeerterten ettt ettt sttt eesne s 19
Figure 12 - Directory Listing ENADIEAcccoiiiriiriiriiniinineneseseeseeestesse e sresesesseessessessessessessessessesssensensens 22
Figure 13 - Stack trace at unknown REST @NdPOiNt ..ccoiveerirenienininerieereeeeeeeee ettt 25

CONFIDENTIAL Juice-Shop 28

SchutzPunkte

Result Report
CYBERSECURITY

A Appendix

A.1 Additional files related to the report

The following files are provided separately with the report

* Processed results of the port scanner nmap
o juice-shop.lab.html
o juice-shop.lab.nmap
o juice-shop.lab.gnmap
o juice-shop.lab.xml
* Results of the vulnerability scanner nuclei
o nuclie-juice-shop.json

CONFIDENTIAL Juice-Shop 29

	Result Report
	Juice-Shop

	Table of Contents
	Document Control
	Team
	List of Changes

	Executive Summary
	Key Findings
	Recommendations
	Limitations and Scope of the Test
	Conclusion
	Vulnerability Overview
	Identified Vulnerabilities

	General Conditions
	Objective
	Test Period
	Scope
	In Scope
	Out of Scope

	User Accounts and Permissions
	User accounts
	Coupon codes

	IP Addresses
	Test Basis and Approach
	Limitations

	Findings
	H1: Login Bypass via Error-based SQL Injection (SQLi)
	Summary
	Impact
	Recommendation
	Technical Description
	Evidence
	Technical Recommendation
	References

	M1: Cross-Site Scripting (XSS) - Reflected
	Summary
	Impact
	Recommendation
	Technical Description
	Evidence
	Technical Recommendation
	References

	M2: Flaws in Discount Coupon Logic
	Summary
	Impact
	Preconditions
	Recommendation
	Technical Description
	Evidence
	Decoding
	Creating your own coupon
	Redeeming the coupon
	Request
	Response
	Checkout-Page

	Technical Recommendation
	References

	M3: Directory Listing Enabled
	Summary
	Impact
	Recommendation
	Technical Description
	Evidence
	Technical Recommendation
	References

	I1: Information Disclosure via Stack Traces
	Summary
	Impact
	Recommendation
	Technical Description
	Evidence
	Technical Recommendation
	References

	Disclaimer
	List of Figures
	Appendix
	Additional files related to the report

